

AFRL-IF-RS-TR-2002-278
Final Technical Report
October 2002

AGENTWARE: AUTOMATED SYNTHESIS OF
SOFTWARE AGENTS

Kestrel Institute

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J389 & G347

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the De-
fense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, includ-
ing foreign nations.

 AFRL-IF-RS-TR-2002-278 has been reviewed and is approved for publication

APPROVED:
 JOHN LEMMER
 Project Engineer

 FOR THE DIRECTOR:
 MICHAEL L. TALBERT, Maj., USAF

 Technical Advisor, Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main-
taining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 October 2002

3. REPORT TYPE AND DATES COVERED
Final Jun 98 – Sep 01

4. TITLE AND SUBTITLE
AGENTWARE: AUTOMATED SYNTHESIS OF SOFTWARE AGENTS

6. AUTHOR(S)
Douglas R. Smith and Stephen J. Westfold

5. FUNDING NUMBERS
C - F30602-98-C-0169
PE - 63760E
PR - AGEN
TA - T0
WU - 12

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Kestrel Institute
3260 Hillview Avenue
Palo Alto California 94304

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-278

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: John Lemmer/IFTB/(315) 330-3657/ John.Lemmer@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This report describes our research on developing and applying synthesis technology to agent-based systems in the
DARPA/AFRL COABS program. We summarize our results in the following areas: generic synthesis frameworks, syn-
thesis of scheduling agents, synthesis of authentication protocols, formal metalevel specifications, and synthesis of au-
thentication protocols, formal metalevel specifications, and synthesis of glue code.

15. NUMBER OF PAGES
16

14. SUBJECT TERMS
Agents, Synthesis, Formal Specifications, Glue Code, Scheduling, Protocols

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1. Executive Summary ... 1

2. Introduction .. 2

3. Overview of Technical Results .. 2

3.1. Synthesis of Scheduling Agents.. 2

3.2. Protocol Synthesis ... 4

3.3. Meta-theories... 4

3.4. Synthesis of Glue Code .. 4

3.5. MIATA Technology Integration Experiment ... 5

4. Synthesis of Glue Code .. 5

4.1. The Setting ... 7

4.2. Inference Rules .. 7

4.3. Simple Example -- Translating between Personnel Databases... 8

4.4. Summary .. 9

5. Publications Resulting from this Project ... 10

6. References ... 11

1

1. Executive Summary

This report describes our research on developing and applying synthesis technology to agent-
based systems in the DARPA/AFRL Control of Agent-Based Systems (COABS) program. Our
technical approach is based on specification refinement technology which allows the systematic
machine-supported development of software from requirement specifications. The refinements
embody programming knowledge about algorithms, data structures, program optimization tech-
niques, etc. The result of the refinement process is executable code that is consistent with the
problem specification. The development process can produce highly efficient code along with a
proof of the code's correctness.

The initial goal of the project was to develop generic tools to support the construction of soft-
ware agents software, in particular agents that provide scheduling and resource allocation ser-
vices. In the second part of the project, we refocused on a critical aspect of coordinating the in-
teraction of agents: the synthesis of glue-code to enable agents to communicate even when they
expect data in different formats and at different levels of abstraction. We also explored the syn-
thesis of authentication protocols via composition mechanisms.

We obtained technical results in the following areas. Alongside each topic area, we list the
names of systems that we built to implement these results.

1. Generic Synthesis Frameworks (Designware)

2. Synthesis of Scheduling Agents (Planware)

3. Synthesis of Authentication Protocols

4. Formal Metalevel Specifications (leading to MetaSlang)

5. Synthesis of Glue Code (glue-code generator, MIATA TIE contributions)

Our technical results, detailed examples, and discussions of implemented systems are docu-
mented in 11 publications that grew out of the work on this project.

2

2. Introduction

This final report summarizes the work performed by Kestrel Institute on the project ``Agentware:
Automated Synthesis of Software Agents", Contract No. F30602-98-C-0169 under the
DARPA/AFRL Control of Agent-Based Systems (COABS) Program. The project ran from 30
June 1998 through 30 September 2001.

The initial goal of this project was to develop generic tools to support the construction of soft-
ware agents software. Our technical approach is based on specification refinement technology
which allows the systematic machine-supported development of software from requirement
specifications. The refinements embody programming knowledge about algorithms, data struc-
tures, program optimization techniques, etc. The result of the refinement process is executable
code that is consistent with the problem specification. The development process can produce
highly efficient code along with a proof of the code's correctness. The proposal and early part of
the project focused on technology for synthesizing software agents, in particular agents that pro-
vide scheduling and resource allocation services.

In the second part of the project (in coordination with DARPA and AFRL), we focused on a
critical aspect of coordinating the interaction of agents: the synthesis of glue-code to enable
agents to communicate even when they expect data in different formats and at different levels of
abstraction. We also explored the synthesis of authentication protocols via composition mecha-
nisms.

This report is structured as follows. Section 2 presents an overview of technical results obtained
during this project. Section 3 presents our results on synthesis of glue-code in more detail. Sec-
tion 4 lists the publications that resulted from this project.

3. Overview of Technical Results

3.1. Synthesis of Scheduling Agents

Our goals for this project were to explore ideas in synthesizing software agents, and to imple-
ment those ideas in an extension of Specware/Designware/Planware systems [18],[16], [1]. We
laid out the following tasks.

1. Develop Designware infrastructure

1.1. Diagram colimit - algorithm, interface
1.2. Taxonomy support at interface
1.3. Ladder construction interface
1.4. Interpretation construction interface

 propagation rules
 support for unskolemization
 support for manual definition
 for connections and other specialized construction methods

2. Develop a taxonomy of agent architectures
3. Synthesize a scheduling agent

 finish CP tactic

3

 program optimization rules (CD-simplify)
 spreadsheet interface development

We made considerable progress in the development of the Designware framework, as reported in
[16]. We accomplished Tasks 1.1 through 1.4 above, and carried out a variety of example deri-
vations. We faced and solved a number of technical difficulties along the way. One technical
problem concerned the use of diagrams of specifications (i.e. structured specifications) and their
colimits (composition of structured specifications). In essence, our first implementation did not
allow certain equalities between paths to be preserved in the colimit. Technically this is the
problem of allowing nonfree shape categories underlying the diagrams. We solved this problem
and implemented an extension to the diagram operations to allow nonfree shapes. Although
quite technical, this result is necessary that the colimit give the kind of result expected in synthe-
sis applications.

We also made considerable progress on Task 3 above (Synthesize a scheduling agent). Our goal
was to create a scheduler vending agent on the net. An agent that requires scheduling services
interacts with the scheduler vendor, supplying the necessary problem-specific detail, and then,
after appropriate payment, receives a scheduling agent together with the necessary data transla-
tors (see Section 3.4) and an appropriate GUI. The synthesis of GUI's would probably be neces-
sary for a successful vendor, but it wasn't a focus of this project.

The key to creating this vending agent was to make the acquisition of scheduling problem-
specific detail as simple and uniform as possible. One key insight was our discovery that all of
the constraints that characterize the schedulers that we have developed in recent years have a
common abstract form, technically they are definite constraints over a semilattice [15],[20]. This
enabled us to set up a spreadsheet-like interface for acquiring the essential information about
scheduling constraints. The formalism allows Planware to automatically convert the spreadsheet
entries into detailed logical constraints without the purchasing agent/user needing to know logic
or category theory.

We reworked the abstract scheduling spec (from Planware) to allow the choice of resources from
a taxonomic library, and to generate task refinements based on input from the spreadsheet-like
interface. We developed a parser/linker function to convert spreadsheet text formulas into the
internal format used by the underlying Specware system.

We developed an initial version of the spreadsheet interface in the scheduler generator. The in-
terface allows users to modify the default entries in the spreadsheet, and the system will parse the
results, and create appropriate task attributes and semilattices, and finally a formal specification
of the user's scheduling problem. This allows us to generate large specifications (about 50 pages
of text) from a simple table of bounding information supplied by the user. In previous work with
KIDS, the user had to write this large specification by hand prior to performing synthesis.

We delivered the newest version of Planware, including the spreadsheet interface, to AFRL in
June 1999 for use as a demo system.

4

3.2. Protocol Synthesis

The project supported a low-level collaboration with Prof. John Mitchell (Stanford University)
on techniques for generating correct authentication protocols between agents. We founded our
formalization of protocol composition on the concept of strand spaces, developed at MITRE. A
strand is a sequence of events, usually communication events, and they are connected to one an-
other to build larger strands, ultimately a complete protocol. This gives a clear foundation for
protocol composition. We deepened that formalism by defining a strand category with arrows
giving the interconnections of strands. We developed a logic for specifying and reasoning about
properties of strands [5], [4].

We were able to sketch out the composition of a simple protocol, the famous Needham-
Schroeder-Lowe authentication protocol. A first version of this protocol (called Needham-
Schroeder) was published 25 years ago and was found to be flawed after 15 years of use, despite
``proofs'' of its correctness. Our approach yields the corrected Needham-Schroeder-Lowe proto-
col by composition.

3.3. Meta-theories

We began work on a meta-theory of Specware specs to capture notions of expression optimiza-
tion and architecture in a general way in Designware. This is crucial foundational work for syn-
thesis of software agents because agent architectures require specification at the meta-level and,
more generally, alot of software design knowledge is best expressed at the meta-level. Architec-
tures are defined in terms of components, connectors, and system invariants. The component
interfaces are specified (in Specware) via formal specifications. The architectural structure of
component interconnections must be at the meta-level. The technical report [17] helped motivate
the redesign of the Specware language and resulted in the MetaSlang system which is the current
foundation of all work at Kestrel.

3.4. Synthesis of Glue Code

Through discussions with MIATA TIE group we refocused our effort on glue code for a route
generator. The idea was to treat the AMC CAMPS Mission Planner (that we had co-developed
previously with BBN) as an agent that requests routing services, and moreover, to treat the route
generator as requiring detailed flight duration and flight path services for a given aircraft, flight
leg, and departure time. A great-circle-route agent and CIRL's WARP would provide alternate
agents for providing these services. More generally, we sought to explore the formal derivation
of glue code that translates between the data offered by one agent and the required data of an-
other. We worked a number of example problems drawn from the CAMPS airlift scheduling
domain[6].

We made significant progress on formally deriving glue code. Here are the key ideas: Given
agent A that produces data source S, and agent B that requires data T, we want to derive glue
code f such that f (S) = T. We first need to reconcile the semantics of agents A and B by produc-
ing a common abstract domain theory T. The derivation of f takes place in the theory formed by
unioning the theories of A and B modulo the common theory T -- technically this is a colimit op-
eration. Given this setting, we found we could readily derive f by interleaving the basic steps of a

5

higher-order matching algorithm with application of domain-specific theorems as necessary.
The result is a data translator that is correct-by-construction.

As a typical example, we are given a scheduling agent MP that produces an airlift schedule -- for
each aircraft, the schedule gives the sequences of flights that it makes. We also have an agent
CM that requires what is known as a commitment matrix -- the number and type of aircraft that
are committed (i.e. not free for allocation) over time. The problem is to derive a translator f from
schedules to commitment matrices. This problem has features of translation and summarization
of data.

There are two key steps in formalizing the problem so that it admits a rigorous and general solu-
tion method. First, there must be a shared language/theory in which both MP and CM can be
described and their shared ontology made explicit. One approach is to develop an abstract com-
mon theory of the domain, which is airlift scheduling (AS) here. Next, theories for MP and CM
are developed as extensions of AS where the schedule and commitment matrix datatypes are ex-
pressed in terms of the language of AS. The problem of translating from schedule to commit-
ment matrix datatypes is expressed in the pushout (shared union) of these theories.

Second, the translation problem can be treated as solving a higher-order equation. For example,
if S is a term constructing an MP schedule and T is a term constructing a CM commitment ma-
trix, then we want to construct a translator f satisfying: f (S) = T. Given this formulation, one
would expect that standard equational reasoning would apply to solve for f. Instead we found it
more effective to interleave the basic steps of higher-order matching and the application of do-
main-specific laws.

The glue-code subgroup of Miata (Mark Burstein, Drew McDermott, Doug Smith and Stephen
Westfold) investigated glue-code synthesis and produced several publications [3],[2]. At Kestrel
we implemented a higher-order matcher and a simple version of the glue-code generator.

3.5. MIATA Technology Integration Experiment

Our participation in the MIATA TIE initially suggested the need to focus on glue-code synthesis.
We implemented a higher-order matcher and a version of the glue-code generator that runs on
the Specware 2000 system (which runs on Windows, Linux, and Solaris platforms). We ran nu-
merous examples through the generator, leading to improvements in the higher-order matcher
and the tactical control of the generator. Dr Westfold demonstrated the glue-code generator as
part of the Miata TIE during the August 2000 COABS meeting.

4. Synthesis of Glue Code

Glue-code addresses the problem of getting agents to communicate with each other. By ``agent''
we mean programs that operate at a high enough semantic level that they can form new connec-
tions to other programs in order to get a job done. To make such a connection, an agent must
find other agents that might carry out a task on its behalf, and then establish a dialogue with
them. Several researchers have examined facets of this interchange, including how agents might
search for each other [19], how they might communicate once they have linked [12], and what

6

``speech acts'' they might employ [7]. However, the most pressing problem is getting them to
speak the same language. This is our focus here.

Suppose one agent, A, needs a certain fact, and agent B can supply it. Assuming that some previ-
ous ``brokering'' or ``advertising'' phase has brought the two agents together, there remains the
problem that the way A represents facts and the way B represents them are probably not com-
patible. It is necessary to interpose a translation program between the two. We call this glue
code. The problem is to generate glue code automatically.

For example, suppose we are given a scheduling agent S that produces an airlift schedule. For
each aircraft, the schedule gives the sequence of flights that it is scheduled to make. We also
have an agent R that maintains what is known as a ``commitment matrix,'' a table that specifies,
for each time slot, the number of each type of aircraft that are committed to scheduled flights (i.e.
not free for allocation) in that time slot. The problem is to derive a translator f from schedules to
commitment matrices, so that R is able to accept the information derived from the scheduler ac-
cording to its declared input specification format (API).

Some commonly considered approaches to this problem are to:

• Engineer the agents to be compatible in advance by changing one or the other to accept or
generate the form required by the other.

• Attempt to develop a ``general purpose'' translation agent that will convert all messages
that can be produced by agents using one semantic model or ontology into equivalent
messages using a second ontology, to the extent that translations between those ontolo-
gies are well defined.

We are developing a third approach, namely, to submit the specification of the source and target
messages to an agent that produces a very specific translator for that purpose. This has the po-
tential advantage of being much more efficient if similar messages will be sent frequently once
the agents have been ``introduced'', or when the data to be passed in a single message contains a
large number of similar forms.

This approach to the problem can be considered, as a form of the automatic programming prob-
lem, but one that we believe is simpler than the general case. It ``feels like'' an exercise in mov-
ing data around, with a bit of condensing, summarization, and totaling thrown in. On the other
hand, problems like this one are not trivial. The reader may wish to stop and try to produce the
glue code for S and R by hand.

In what follows, we will describe our framework, and illustrate with several examples. Al-
though, we do not have a full implementation of our approach as yet, we have developed several
prototypes that can handle a variety of examples like those described in this paper. At the end of
the paper, we will talk about opportunities and challenges in automating the process more fully,
and in applying it in a distributed agent environment.

In addition to the agent-communication work we mentioned at the outset, much work has been
done by the database community on the problem of translating between databases, where it is

7

called the problem of schema integration, with subproblems of query translation and value
translation. [14],[10],[8],[13]. The main differences are:

1. Database researchers assume that the main problem is to translate queries (and their re-
sults) from one formalism to another. Queries are written in a standard language such as
SQL [9], and the only issue is how the relation and argument names are mapped. We
want to be able to translate an arbitrary formula (or functional expression) from one for-
malism to the other.

2. Database researchers assume that the results of a query are tables in a standard format.
Hence if you can find a translation of a query you automatically can translate the result.
We will tackle the more general case of automatically generating data-structure-
translation code given expressions that describe what one agent wants and what another
can produce.

4.1. The Setting

The common theory of the application domain provides symbols for the concepts, operations,
and properties, relationships, etc. in the domain. Its axioms constrain the meaning of the vocabu-
lary. For example, suppose that we have an abstract database of persons P : set(Person) where
each Person has a name: Person → string, id : Person → nat, age: Person → nat, and other at-
tributes.

Our example supposes that this abstract database has two somewhat different realizations: S and
T. To express the realization relation it is convenient to use the following notation which lifts
value tupling to function tupling: for f1: A → B1,…, fn: A → Bn, the function 〈f1,…, fn 〉: A →
B1×…× Bn satisfies the tupling-reduction law

〈f1,…, fn 〉 (a) ═ 〈f1(a),…, fn(a) 〉

Using the function tupling notation, the source database S is

S = image(〈name, id, age〉 , P)

and the target database that we want to build from S is

T = image(〈 name, λ(pv) if age(pv) > 30 then id(pv) else 0〉 , P)

Formally, we want to translate from dataset S and dataset T (without reference to P) by solving
the higher-order equation f(S)=T.

4.2. Inference Rules

The following rules correspond to the basic steps of a second-order matching algorithm [11].

Imitation Rule
for any f : A →C
and g: B1×…× Bn → C where Bi is not a function type

8

and hi : A → Bi for 1 ≤ i ≤ n,
 f(u) = g(v1,…, vn)

 f(x) = g(…, hi(x),…) Λ hi(u) = vi for 1 ≤ i ≤ n

Projection Rule
for any f : A1 ×…× Am →C
and g: B1×…× Bn → Ai for some i, 1 ≤ i ≤ m,
 f(a1,…, am) = g(b1,…, bn)

 f(x1,…, xm) = xi ∧ ai = g(b1,…, bn)

The terms ``imitation'' and ``projection'' are standard in the matching and unification literature.
Here we formulate them as inference rules to be used in a backward inference mode. It can be
easily seen that they follow from universal instantiation and equality substitution rules. We also
use the usual rules for handling equalities and equivalences, and the basic rules of the lambda
calculus: α, β, and η-reduction. The following law is useful for the backward chaining-style of
proof that we adopt.

Image Decomposition Law
for any g : A →B,
and h : A →C,
and f : set(B) → set(C),
and i : B →C,
 f(image(g, As)) = image(h, As)

 f(Bs) = image(i, Bs) ∧ i(g(x)) = h(x)

4.3. Simple Example -- Translating between Personnel Databases

Suppose that we have an agent that offers personnel database services, in particular it provides

S = image(〈name, id, age〉 , P)

and another agent requires

T = image(〈 name, λ(pv) if age(pv) > 30 then id(pv) else 0〉 , P)

The problem is to calculate f such that f(S) = T:

f(image(〈 name, id, age〉 , P)) = image(〈 name, λ(pv) if age(pv) > 30 then id(pv) else 0〉 , P)

using Image Decomposition with
 {g 〈 name, id, age〉 ,
 h 〈 name, λ(pv) if age(pv) > 30 then id(pv) else 0〉

9

 f(X) = image (i, X)

 ∧ i(〈name, id, age〉 (p)) = 〈 name, λ(pv) if age(pv) > 30 then id(pv) else 0〉 (p)

 The first conjunct ion provides a substitution/definition for f,

and tupling-reduction is applied to the second conjunct

 i(name(p), id(p), age(p)) = 〈name(p), if age(p) > 30 then id(p) else 0 〉

 Imitation with {g λ (x, y) 〈x, y〉}

 i(n, i, a) = 〈 i1 (n, i, a), i2 (n, i, a) 〉
 ∧ i1 (name(p), id(p), age(p)) = name(p)
 ∧ i2 (name(p), id(p), age(p)) = if age(p) > 30 then id(p) else 0

 Again, the first conjunct ion provides a substitution/definition for i,

and projection solves for i1, Imitation for i2

 i(n, i, a) = n Λ name(p) = name(p)
 ∧ i2 (n, i, a) = if i21 (n, i, a) then i22 (n, i, a) else i23 (n, i, a)

 ∧ i21 (name(p), id(p), age(p)) = age(p) > 30
 ∧ i22 (name(p), id(p), age(p)) = id(p)
 ∧ i23 (name(p), id(p), age(p)) = 0

The rest of the derivation is straightforward application of imitation and projection. Summing up,
we have constructed the functions

 f(X) = image(i, X)
 i(n, i, a) = 〈 i1 (n, i, a), i2 (n, i, a) 〉
 i1 (n, i, a) = n
 i2 (n, i, a) = if i21 (n, i, a) then i22 (n, i, a) else i23 (n, i, a)

After unfolding the definitions below f, we get the translation code

T = f (S) = image(λ(〈n, i, a〉) 〈n, if a > 30 then i else 0〉 , S).

This example is typical of our derivations in that mostly matching rules are applied, with some
law applications interspersed.

4.4. Summary

Other, more complex, examples that we have solved in this manner include

• translating an aircraft schedule to a commitment matrix

• translate a mission database to a list of flights for each aircraft

10

• given flight data and cargo data, construct a manifest list for each flight

• translating from cargo weight expressed in terms of cargo classes to cargo weight ex-
pressed in terms of individual objects (this problem addressed the issue of conceptual
mismatch and possibly conflicting assumptions).

These examples, and many others, are currently working in the glue-code generator built by Dr.
Westfold in the Specware/Designware system [18],[16].

5. Publications Resulting from this Project

Lee Blaine, Limei Gilham, Junbo Liu, Douglas R. Smith, and Stephen Westfold, Planware --
Domain-Specific Synthesis of High-performance Schedulers, Proceedings of the Thirteenth
Automated Software Engineering Conference, IEEE Computer Society Press, Los Alamitos,
California, October, 1998, 270--280.

Smith, D.R., Toward a Theory of Specware Specs, Kestrel Institute Technical Report, July 1999.

Smith, D.R., Subsort Introduction, Kestrel Institute Technical Report, October 1999.

Smith, D.R., Mechanizing the Development of Software, invited paper in Calculational System
Design, Proceedings of the NATO Advanced Study Institute, Eds. M. Broy and R. Steinbrueg-
gen, IOS Press, Amsterdam, 1999, 251-292.

Smith, D.R., Designware: Software Development by Refinement, invited paper in Proceedings
of the Eighth International Conference on Category Theory and Computer Science, Edinburgh,
September, 1999.

Nancy Durgin and John C. Mitchell and Dusko Pavlovic, Protocol composition and correctness,
Kestrel Institute Technical Report, January, 2000.

M. Burstein, D. McDermott, D.R. Smith, and S.J. Westfold, Formal Derivation of Agent Inter-
operation Code, Proceedings of the Formal Approaches to Agent-Based Systems Workshop,
NASA Goddard Space Flight Center, MD, April 2000.

M. Burstein, D. McDermott, D.R. Smith, and S.J. Westfold, Derivation of Glue Code for Agent
Interoperation, invited paper in Journal of Autonomous Agents and Multi-Agent Systems, 2001
(earlier version in Proceedings of the Agents 2000 Conference, Barcelona, Spain, May 2000).

Nancy Durgin and John C. Mitchell and Dusko Pavlovic, A compositional logic for protocol cor-
rectness, in Proceedings of Computer Security Foundations Workshop 2001, Ed.S. Schneider,
2001 (ftp://ftp.kestrel.edu/pub/papers/pavlovic/CLPC.ps.gz).

Westfold, S.J. and Smith, D.R., Synthesis of Efficient Constraint Satisfaction Programs, Knowl-
edge Engineering Review 16(1), Special Issue on AI and OR, 2001, 69-84.

11

D. McDermott, M. Burstein, and D.R. Smith, Overcoming Ontology Mismatches in Transactions
with Self-Describing Service Agents, in Proceedings of the First Semantic Web Working Sym-
posium (SWWS '01), 30 July - 1 August 2001.

6. References

[1] Blaine, L., et al. Planware - Domain-Specific Synthesis of High-Performance Schedulers. In,
Proceedings of the Thirteenth IEEE International Automated Software Engineering Confer-
ence (ASE 1998). Hawaii, October 13-16, 1998. IEEE.

[2] Burstein, M., D. McDermott, and D. Smith. Overcoming ontology mismatches in transactions

with self-describing service agents. In, Proceedings of the First Semantic Web Working Sym-
posium (SWWS '01). Stanford University, California, 2001.

[3] Burstein, M., et al. Formal derivation of agent interoperation code. Journal of Autonomous

Agents and Multi-Agent Systems, 2001.

[4] Durgin, N., J.C. Mitchell, and D. Pavlovic. A compositional logic for protocol correctness.

In, Proceedings of Computer Security Foundations Workshop, 2001.

[5] Durgin, N., J.C. Mitchell, and D. Pavlovic. Protocol composition and correctness. Kestrel

Institute Tech. Rep. KES.U.00.01, January 2000.

[6] Emerson, T. and M. Burstein. Development of a constraint-based airlift scheduler by program

synthesis from formal specifications. In, Proceedings of the Fourteenth Automated Software
Engineering Conference, October 1999. IEEE Computer Society Press.

[7] Finin, T., Y. Labrou, and J. Mayfield. Kqml as an agent communication language. In, Soft-

ware Agents. : AAAI Press/MIT Press, 1997.

[8] Florescu, D., L. Raschid, and P. Valduriez. A Methodology for Query Reformulation in C

using semantic knowledge. Int. J. of Cooperative Information Systems, 1996.

[9] Groff, J.R. and P.N. Weinberg. The Complete Reference SQL: McGraw-Hill, 1998.

[10] Hammer, J., et al. Extracting semistructured information from the web. In, Workshop on

Management of Semistructured Data. Tucson, Arizona, 1997.

[11] Huet, G. and B. Lang. Proving and applying program transformations expressed with sec-

ond-order patterns. Acta Informatica. 11, 1978, pp. 31--55.

[12] Martin, D.L., A.J. Cheyer, and D.B. Moran. The open agent architecture: A framework for

building distributed software systems. Applied Artificial Intelligence, 1999, pp. 91--128.

[13] Milo, T. and S. Zokar. Using schema matching to simplify heterogeneous data translation.

In, Proc. Conf. on Very Large Data Bases, 1998, pp. 122--133.

12

[14] Papakonstantinou, Y., et al. A query translation scheme for rapid implementation of wrap-
pers. In, Proc. DOOD'95, 1995.

[15] Rehof, J. and T. Mogenson. Tractable constraints in finite semilattices. Science of Com-
puter Programming. 35, 1999, pp. 191--221.

[16] Smith, D.R. Mechanizing the development of software. In, Calculational System Design,

Proceedings of the NATO Advanced Study Institute, M.Broy and R. Steinbrueggen, Eds. Am-
sterdam: IOS Press, 1999, pp. 251--292.

[17] Smith, D.R. Toward a theory of Specware specs. Kestrel Institute Tech. Rep., July 1999.

[18] Srinivas, Y.V. and R. Jüllig. Specware: Formal Support for Composing Software. In, Pro-

ceedings of the Conference on Mathematics of Program Construction, B. Moeller, Ed. Ber-
lin: Springer-Verlag, 1995, pp. 399--422. Lecture Notes in Computer Science, Vol. 947.

[19] Sycara, K., et al. Dynamic service matchmaking among agents in open information envi-

ronments. ACM SIGMOD Record - Special Issue on Semantic Interoperability in Global In-
formation Systems. 28(1), 1999, pp. 47--53.

[20] Westfold, S. and D. Smith. Synthesis of efficient constraint satisfaction programs. Knowl-

edge Engineering Review. 16(11), 2001, pp. 69--84.

